Linear Algebra [KOMS120301] - 2023/2024

14.2 - Eigenvector

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 14 (December 2023)

1 / 33 (C) [Dewi Sintiari/CS Undiksha](#page-36-0)

KORK EXTERNE ROAD

Learning objectives

After this lecture, you should be able to:

- 1. explain the concept of eigenvalues and eigenvectors;
- 2. find the eigenvalues of a matrix;
- 3. find the eigenvectors of a matrix;
- 4. find the bases of eigenspace of a matrix.

KORK EXTERNE ROAD

Motivating example

 $3/33$ © Dewi Sintiari/CS Undiksha

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q Q

Part 1: Eigenvectors & **Eigenvalues**

4 / 33 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

 $\mathbf{E} = \mathbf{A} \in \mathbf{E} \times \mathbf{A} \in \mathbf{B} \times \mathbf{A} \oplus \mathbf{B} \times \mathbf{A} \oplus \mathbf{A}$

What are eigenvectors & eigenvalues?

Definition

Let A be an $n \times n$ matrix, then a nonzero vector **x** in \mathbb{R}^n is called an eigenvector of A (or of the matrix operator T_A) if Ax is a scalar multiple of x; that is:

$$
A\mathbf{x}=\lambda\mathbf{x}
$$

for some scalar $\lambda \in \mathbb{R}$.

 λ is called an eigenvalue of A (or of T_A), and **x** is said eigenvector corresponding to λ .

5 / 33 c [Dewi Sintiari/CS Undiksha](#page-0-0)

Geometric interpretation

The eigenvector **x** represents:

the column vector in which multiplying it by a square matrix A yields a vector λ **x** for some $\lambda \in \mathbb{R}$, i.e. a vector that is a multiplication of x (same direction as x but with different magnitude).

Geometric interpretation

Depending on the sign and magnitude of the eigenvalue λ corresponding to x, the operation $A\mathbf{x} = \lambda \mathbf{x}$ compresses or stretches x by a factor of λ .

7 / 33 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

つくい

Example

Given
$$
A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}
$$
. The vector $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector of A corresponding to $\lambda = 3$.

8 / 33 © [Dewi Sintiari/CS Undiksha](#page-0-0)

K ロ ▶ K 레 ▶ K 로 ▶ K 로 ▶ - 로 - 외 Q Q Q

Example

Given $A = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}$ 8 −1 . The vector $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 2 $\Big]$ is an eigenvector of A corresponding to $\lambda = 3$.

$$
A\mathbf{x} = A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3\mathbf{x}
$$

8 / 33 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

イロト イ団 トイミト イヨト 一番

9/33 © Dewi Sintiari/CS Undiksha

K ロ K イロ K K ミ K X ミ K X X Y Y Q Q C

Part 2: Computing Eigenvalue

10 / 33 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

KORK EXTERNE ROAD

How to compute eigenvalues?

Example

How to get the value $\lambda = 3$ and the vector $\mathbf{x} = \begin{bmatrix} 1 \ 2 \end{bmatrix}$ 2 $\Big]$ from the previous example?

Recall that an eigenvalue λ and an eigenvector **x** of A must satisfy

 $A\mathbf{x} = \lambda \mathbf{x}$

Hence,

 $A\mathbf{x} = \lambda \mathbf{x} \Leftrightarrow A\mathbf{I}\mathbf{x} = \lambda I\mathbf{x} \Leftrightarrow A\mathbf{x} = \lambda I\mathbf{x} \Leftrightarrow (\lambda I - A)\mathbf{x} = 0$

Recall that $(\lambda I - A)\mathbf{x} = 0$ has a non-zero solution when

$$
\det(\lambda I - A) = 0
$$

11 / 33 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

A DIA K PIA A BIA DIA 4 DIA 4 DIA A BIA 4 DIA BIA BIA 4 DIA BIA 5 DIA 4 DIA BIA 5 DIA 4 DIA BIA 5 DIA 8 DIA

How to compute eigenvalues?

Theorem (Eigenvalue)

If A is an $n \times n$ matrix, then λ is an eigenvalue of A if and only if it satisfies the equation:

$$
\det(\lambda I - A) = 0
$$

This is called the characteristic equation of A.

12 / 33 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

KORK EXTERNE ROAD

Example: how to get the eigenvalue?

Given
$$
A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}
$$
. By the theorem, we solve $det(\lambda I - A) = 0$,
that is:

13 / 33 © [Dewi Sintiari/CS Undiksha](#page-0-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Example: how to get the eigenvalue?

Given
$$
A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}
$$
. By the theorem, we solve $det(\lambda I - A) = 0$,
that is:

$$
\text{det}\left(\lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}\right) = 0 \iff \begin{vmatrix} \lambda - 3 & 0 \\ -8 & \lambda + 1 \end{vmatrix} = 0
$$

which yields:

$$
(\lambda - 3)(\lambda + 1) = 0 \Leftrightarrow \lambda_1 = 3 \text{ and } \lambda_2 = -1
$$

This means that the eigenvalues of A are 3 and -1 .

13 / 33 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

YO A REPART AND YOUR

Generalization

For a matrix A of size $n \times n$, the charateristic equation $(\lambda I - A)\mathbf{x} = 0$ yields:

$$
\lambda^{n}+c_{1}\lambda^{n-1}+\cdots+c_{n-1}\lambda+c_{n}=0
$$
 (1)

The polynomial: $(\lambda^n + c_1 \lambda^{n-1} + \cdots + c_{n-1} \lambda + c_n)$ is called the characteristic polynomial of A.

Example

The characteristic polynomial of
$$
A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}
$$
 is

$$
p(\lambda)=(\lambda-3)(\lambda+1)=\lambda^2-2\lambda-3
$$

14 / 33 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

KO K (FRACT) A B K D B YOUN

Exercise 1: Eigenvalues of a 3×3 matrix

Find the eigenvalues of:

$$
A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}
$$

Solution:

15 / 33 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

KO K K Ø K K E K K E K V K K K K K K K K K

Exercise 1: Eigenvalues of a 3×3 matrix

Find the eigenvalues of:

$$
A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}
$$

Solution:

Compute the characteristic polynomial:

$$
det(\lambda I - A) = det \begin{bmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -4 & 17 & \lambda - 8 \end{bmatrix} = \lambda^3 - 8\lambda^2 + 17\lambda - 4
$$

The eigenvalues are the solution of:

$$
\lambda^3-8\lambda^2+17\lambda-4=0
$$

that is:

$$
(\lambda - 4)(\lambda^2 - 4\lambda + 1) = 0 \Leftrightarrow \lambda_1 = 4, \lambda_2 = 2 + \sqrt{3}, \text{ and } \lambda_3 = 2 - \sqrt{3}
$$

15 / 33 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

KO K K Ø K K E K K E K V K K K K K K K K

Exercise 2: Eigenvalues of an upper triangular matrix

Given:
$$
A = \begin{bmatrix} \frac{1}{2} & -1 & 5 \\ 0 & \frac{2}{3} & -8 \\ 0 & 0 & -\frac{1}{4} \end{bmatrix}
$$
. Find the eigenvalues of A.

16 / 33 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

YO A REPART AND YOUR

Exercise 3: Eigenvalues of a **lower** triangular matrix

Given:
$$
A = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -1 & \frac{2}{3} & 0 \\ 5 & -8 & -\frac{1}{4} \end{bmatrix}
$$
. Find the eigenvalues of A.

17 / 33 (C) Dewi Sintiari / CS Undiksha

KORK ERKERK ER KRENK

What can you say about the eigenvalues of a triangular matrix? Find the eigenvalues of:

$$
A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix}
$$

18 / 33 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

What can you say about the eigenvalues of a **triangular matrix**? Find the eigenvalues of:

$$
A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & 0 & a_{33} & a_{34} \\ 0 & 0 & 0 & a_{44} \end{bmatrix}
$$

Solution:

$$
det(\lambda I - A) = det \begin{bmatrix} \lambda - a_{11} & -a_{12} & -a_{13} & -a_{14} \\ 0 & \lambda - a_{22} & -a_{23} & -a_{24} \\ 0 & 0 & \lambda - a_{33} & -a_{34} \\ 0 & 0 & 0 & \lambda - a_{44} \end{bmatrix}
$$

$$
= (\lambda - a_{11})(\lambda - a_{22})(\lambda - a_{33})(\lambda - a_{44})
$$

Hence the characteristic equation is:

$$
(\lambda-a_{11})(\lambda-a_{22})(\lambda-a_{33})(\lambda-a_{44})=0
$$

that gives $\lambda_1 = a_{11}$, $\lambda_2 = a_{22}$, $\lambda_3 = a_{33}$, $\lambda_4 = a_{44}$ $\lambda_4 = a_{44}$ $\lambda_4 = a_{44}$ 18 / 33 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

Does it hold for diagonal matrices?

Yes, because a diagonal matrix is a triangular matrix.

19 / 33 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

KORK EXTRA DR AGA

Part 3: Computing **Eigenvectors**

20 / 33 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

 $\mathbf{E} = \mathbf{A} \in \mathbf{E} \times \mathbf{A} \in \mathbf{B} \times \mathbf{A} \oplus \mathbf{B} \times \mathbf{A} \oplus \mathbf{A}$

 QQ

Recap

So far, we have seen...

Theorem

If A is an $n \times n$ matrix, the following statements are equivalent.

- 1. λ is an eigenvalue of A.
- 2. λ is a solution of the characteristic equation det $(\lambda I A) = 0$.
- 3. The system of equations $(\lambda I A)x = 0$ has nontrivial solutions.
- 4. There is a nonzero vector **x** such that $Ax = \lambda x$.

We have seen 1, 2, and 3. Now we will see that 4 holds.

21 / 33
C [Dewi Sintiari/CS Undiksha](#page-0-0)

KORK EXTERNE ROAD

Finding eigenvectors (1)

By definition, the eigenvectors of A corresponding to an eigenvalue λ are the **nonzero** vectors that satisfy:

$$
(\lambda I - A)\mathbf{x} = 0
$$

Example

In the previous example, we are given $A = \begin{bmatrix} 3 & 0 \ 0 & 0 \end{bmatrix}$ 8 −1 $\Big]$ with eigenvalues 3 and -1.

We can compute the eigenvector for each eigenvalue by solving:

1.
$$
(3I - A)\mathbf{x} = \mathbf{0};
$$

2. $(-I - A)\mathbf{x} = \mathbf{0};$

22 / 33 C [Dewi Sintiari/CS Undiksha](#page-0-0)

A DIA K PIA A BIA DIA 4 DIA 4 DIA A BIA 4 DIA BIA BIA 4 DIA BIA 5 DIA 4 DIA BIA 5 DIA 4 DIA BIA 5 DIA 8 DIA

Finding eigenvectors (2)

For $\lambda = 3$

$$
(3I - A)\mathbf{x} = 0
$$

$$
\left(\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}\right) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

$$
\begin{bmatrix} 0 & 0 \\ -8 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

$$
\begin{bmatrix} 0 \\ -8x_1 + 4x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

Hence, it must be that $-8x_1+4x_2=0 \; \Leftrightarrow \; x_1=\frac{1}{2}$ $\frac{1}{2}x_2$. The parametric solution is $x_1 = s$, $x_2 = 2s$ with $s \in \mathbb{R} \setminus \{0\}$.

23 / 33 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

KORK EXTERNE ROAD

Finding eigenvectors (3)

For $\lambda = -1$

$$
(-I - A)\mathbf{x} = 0
$$

$$
\left(\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}\right) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

$$
\begin{bmatrix} -4 & 0 \\ -8 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

$$
\begin{bmatrix} -4x_1 \\ -8x_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

Hence, $x_1 = 0$ and $x_2 = t$ with $t \in \mathbb{R} \setminus \{0\}$.

24 / 33 (C) Dewi Sintiari/CS Undiksha

KO K K G K 4 E K 4 E K G K K K K K K A G A K

So, can you explain the step-by-step computing the eigenvalues and the eigenvectors?

To compute the **eigenvalues**. **WA**

To compute the eigenvectors,

we...

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 $25/33$ C Dewi Sintiari/CS Undiksha

Part 4: Bases for eigenspaces

26 / 33 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

KORK ERKERK ER KRENK

What is eigenspace?

Note that the eigenvector of A corresponding to λ is the solution of the linear system:

$$
(\lambda I - A)\mathbf{x} = \mathbf{0}
$$

So an eigenvector x is a nonzero vector in the solution space of the linear system.

The solution space of the linear system $(\lambda I - A)x = 0$ is called the eigenspace of A.

The eigenspace of A corresponding to λ can be viewed as:

- 1. the null space of the matrix $\lambda I A$;
- 2. the kernel of the matrix operator $T_{(\lambda I A)} : \mathbb{R}^n \to \mathbb{R}^n$;
- 3. the set of vectors for which $A\mathbf{x} = \lambda \mathbf{x}$

27 / 33 (C) Dewi Sintiari / CS Undiksha

A DIA K PIA A BIA DIA 4 DIA 4 DIA A BIA 4 DIA BIA BIA 4 DIA BIA 5 DIA 4 DIA BIA 5 DIA 4 DIA BIA 5 DIA 8 DIA

Example: how to find an eigenspace?

Look again at the previous example.

We are given
$$
A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}
$$
 with eigenvalues 3 and -1.

• For $\lambda = 3$, the eigenvectors are determined by:

$$
x_1 = s, \ x_2 = 2s \text{ with } s \in \mathbb{R} \setminus \{0\} \text{ or } \mathbf{x}_1 = \begin{bmatrix} s \\ 2s \end{bmatrix} = s \begin{bmatrix} 1 \\ 2 \end{bmatrix}
$$

• For $\lambda = -1$, the eigenvectors are determined by:

$$
x_1 = 0 \text{ and } x_2 = t \in \mathbb{R} \setminus \{0\} \text{ or } \mathbf{x}_2 = \begin{bmatrix} 0 \\ t \end{bmatrix} = t \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$

Hence, $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\Big\}$ is a basis for the eigenspace corresponding to $\lambda=3$, and 2 $\lceil 0$ $\Big]$ is a basis for the eigenspace corresponding to $\lambda=-1.$ 1 KO K K Ø K K E K K E K V R K K K K K K K K

28 / 33 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

Exercises

Exercise 1.

Find bases for eigenspaces of the matrix:

$$
A = \begin{bmatrix} -1 & 3\\ 2 & 0 \end{bmatrix}
$$

Exercise 2.

Find bases for eigenspaces of the matrix:

$$
A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}
$$

29 / 33 (C) [Dewi Sintiari/CS Undiksha](#page-0-0)

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - ' 큰' - 10 Q Q

Part 5: Eigenvalues and invertibility

 $30/33$ (c) Dewi Sintiari/CS Undiksha

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

Motivating example

Question 1.

We have seen (in the previous example) that the matrix $A = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}$ 8 −1 \int has eigenvalues 3 and -1 .

Task: Compute $det(A)$.

Question 2.

Given matrix
$$
A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}
$$
.

Task:

- Compute the eigenvalues of A.
- Compute the determinant of A

KO K K Ø K K E K K E K V K K K K K K K K

So, what can you say about the relation between the determinant of A and the eigenvalues of A ?

 $32/33$ (c) Dewi Sintiari/CS Undiksha

押り イミト イミト

to be continued...

 $33 / 33$ © Dewi Sintiari/CS Undiksha

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q Q